China manufacturer Rotary Compressor R134A 650W Cooling Capacity 3000BTU Qx65h for Mini Cabinet Air Condition air compressor lowes

Product Description

rotary compressor r134a 650W cooling capacity  3000btu QX65H for mini cabinet air condition

Product Description

  FS Hermetic rotary compressor designed for air conditioner,dehumidifier,other industrial equipment
air cooling device. take Eco-friendly R290 as refrigerant, provide enhanced reliability, reduced sound and maximum flexibility with vertical and horizontal installation options for air conditioning and refrigeration applications.

Item AC Fixed speed  small rotary compressor
Brand FS THERMO
Model FSQX65H
Voltage AC 120V 60hz singel phase 
Refrigerant R134A
Height 206mm
Net weight 4.4kg
Cooling capacity 690wattW (3315Btu)
Evaporating Temp.  -10 ~ 15 

ºC

Displacement  6.5cc
Certification ISO,CE
Payment T/T 30% deposit,70% balance before shipment
Packing Standard save  packing or according to client’s requirement
Transportation By sea/air or as request
Delivery port HangZhou PORT/ZheJiang  PORT

 
production show 
 

 Dimension 

Series Models

R134a Fixed Speed Compressor with Tropical condition( condensing temp. 75 ºC)         
Model Power supply Mount Displace ASHRAE (7.2°C) Power Capacitor Height Test
Type ment Cooling Capacity Conditions
  cm³ W Btu/h W mm  
FSQR-046H 230V/50/60Hz vertical 4.6 510 1740 208 8uF/450VAC 160 ASHRAE/T
FSQR-065H 230V/50/60Hz vertical 6.5 700 2390 275 8uF/450VAC 170 ASHRAE/T
FSQR-106H 230V/50Hz vertical 10.6 1295 4416 488 15uF/450VAC 250 ASHRAE/T
FSQR-135H 230V/50Hz vertical 13.5 1650 5630 610 25uF/450VAC 250 ASHRAE/T
FSQR-176H 230V/50Hz vertical 17.6 2070 7060 668 25uF/450VAC 280 ASHRAE/T
FSQAW106 230V/50Hz Horizontal 10.6 1660 5660 605 20uF/450VAC 142 ASHRAE/T
FSQAW135 230V/50Hz Horizontal 13.5 1650 5630 610 25uF/450VAC 142 ASHRAE/T
FSQAW268 230V/50Hz Horizontal 26.8 2900 9900 1050 35uF/450VAC 138 ASHRAE/T
                   
R134a Fixed Speed Compressor         
Model Power supply Mount Displace ASHRAE (7.2°C) Power Capacitor Height Test
Type ment Cooling Capacity Conditions
  cm³ W Btu/h W mm  
FSQX28H 230V/50Hz vertical 2.8 275 938 125 4uF/450VAC 151 ASHRAE/T
FSQX36H 230V/50Hz vertical 3.6 365 1245 165 5uF/450VAC 151 ASHRAE/T
FSQX42H 230V/50Hz vertical 4.2 435 1484 195 6uF/450VAC 151 ASHRAE/T
FSQX46H 230V/50Hz vertical 4.6 490 1672 220 7uF/450VAC 151 ASHRAE/T
FSQX59H 230V/50Hz vertical 5.9 620 2115 255 7uF/450VAC 170 ASHRAE/T
FSQX65H 230V/50Hz vertical 6.5 690 2354 285 7uF/450VAC 170 ASHRAE/T
FSQX725H 230V/50Hz vertical 7.25 790 2695 305 7uF/450VAC 175 ASHRAE/T
FSQX80H 230V/50Hz vertical 8 890 3036 318 8uF/450VAC 185 ASHRAE/T
FSQX95H 230V/50Hz vertical 9.5 1030 3512 382 10uF/450VAC 190 ASHRAE/T
FSQX110H 230V/50Hz vertical 11 1305 4450 440 12uF/450VAC 205 ASHRAE/T
FSQX28HA 230V/60Hz vertical 2.8 340 1160 145 4uF/450VAC 151 ASHRAE/T
FSQX36HA 230V/60Hz vertical 3.6 440 1500 188 4uF/450VAC 151 ASHRAE/T
FSQX42HA 230V/60Hz vertical 4.2 540 1850 235 5uF/450VAC 151 ASHRAE/T
FSQX46HA 230V/60Hz vertical 4.6 585 1996 250 6uF/450VAC 151 ASHRAE/T
FSQX59HA 230V/60Hz vertical 5.9 745 2542 300 6uF/450VAC 170 ASHRAE/T
FSQX65HA 230V/60Hz vertical 6.5 820 2800 314 7uF/450VAC 170 ASHRAE/T
FSQX725HA 230V/60Hz vertical 7.25 945 3222 343 8uF/450VAC 175 ASHRAE/T
FSQX80HA 230V/60Hz vertical 8 1068 3642 380 8uF/450VAC 185 ASHRAE/T
FSQX110HA 230V/60Hz vertical 11 1506 5135 520 11uF/450VAC 200 ASHRAE/T
FSQX176H 230V/50Hz vertical 17.6 2740 9350 670 25uF/450VAC 240 HPD
                   
R134a Fixed Speed Compressor         
Model Power supply Mount Displace ASHRAE (7.2°C) COP Capacitor Height Test
Type ment Cooling Capacity Conditions
  cm³ W Btu/h W/W mm  
QX28H1 115-120V 60Hz Vertical 2.8 340 1160 2.3 12 151 ASHRAE/T
QX36H1 115-120V 60Hz Vertical 3.6 442 1500 2.34 14 151 ASHRAE/T
QX42H1 115-120V 60Hz Vertical 4.2 550 1875 2.34 18 151 ASHRAE/T
QX46H1 115-120V 60Hz Vertical 4.6 593 2571.13 2.33 20 151 ASHRAE/T
QX50H1 115-120V 60Hz Vertical 5 620 2115 2.41 18 160 ASHRAE/T
QX59H1 115-120V 60Hz Vertical 5.9 745 2540.45 2.48 20 170 ASHRAE/T
QX65H1 115-120V 60Hz Vertical 6.5 820 2796.2 2.41 20 170 ASHRAE/T
QX70H1 115-120V 60Hz Vertical 7 875 2988 2.4 20 170 ASHRAE/T
QX72H1 115-120V 60Hz Vertical 7.2 946 3225.86 2.7 30 175 ASHRAE/T
QX80H1 115-120V 60Hz Vertical 8 1066 3635.06 2.8 21 185 ASHRAE/T
QX110H1 115-120V 60Hz Vertical 11 1505 5130 2.9 45 200 ASHRAE/T
                   

 

Application
 portable air conditioner(AC), window type AC, splite type AC, dehumidifier equipment,heat dryer equipment,
liquid cooling system,window type AC,split type AC,other industrial equipment

Package and shipping 

Sample order:
Each compressor was packaged in 1 carton box and non-fumigated wooden box.
Delivery time: Generally we have samples on stock. We can deliver as soon as receiving the payment.
Large order:
The compressors will be packaged in non-fumigated pallets.

Port:HangZhou or ZheJiang

Company Info
FS CHINAMFG is a HVAC&R CHINAMFG company who focus on the heating and cooling products designing, Production and marketing more than 15 years. We have serviced and cooperated with more than 100 customers in the global market.  Our main product is CHINAMFG heat exchanger, compressor, and integrated refrigeration unit, special Chiller unit and custom CHINAMFG solution.The products including the Cooling module for chamber, Liquid Chiller Unit for batter cooling , cooling compressors ,  We always providing and investing innovational HVAC&R technology to enhance the customer experience and help us become a better business partner to you.

FAQ

1. What is the MOQ?
The MOQ is 1 piece.
2. What is the delivery time?
10days after payment for sample order, and 25days for bulk order.
3. What is the shipping port?
HangZhou or ZheJiang port.
4. What is the payment method?
We can accept T/T, Western Union, Paypal, L/C, etc.
5. What is our main product?

• air conditioning compressor,220v,110v,100v ,50/60hz
• Mini DC 12V/24V/48V compressor
• DC 12V/24V/48V/72V/312V compressor
• Mini chillier module , Mini condensing unit
• spot cooling system
• Rotary compressor for industry cooling , Dehumidifyer , water gen.
• Refrigeration compressor & Condensing unit for commercial refrigeration & transport refrigeration

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Installation Type: Stationary Type
Samples:
US$ 55/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China manufacturer Rotary Compressor R134A 650W Cooling Capacity 3000BTU Qx65h for Mini Cabinet Air Condition   air compressor lowesChina manufacturer Rotary Compressor R134A 650W Cooling Capacity 3000BTU Qx65h for Mini Cabinet Air Condition   air compressor lowes
editor by CX 2024-02-03